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1. INTRODUCTION 

Convective heat transfer in porous media is a subject of 
growing interest. This is because of many important engin- 
eering applications of porous media. Such applications can 
be found in heat exchanges, energy storage units, chemical 
reactors, heat pipes, electronic cooling and ceramic process- 
ing, One of important and fundamental fluid flow situations 
in porous media is Couette flow which can occur, for exam- 
ple, between two parallel flat plates, one of which is at rest, 
and the other is moving in its own plane with a constant 
velocity, &,. Since in Couette flow velocity of the moving 
plate can be large, and also viscous forces in the boundary 
layer near the moving plate can be significant, to obtain a 
correct description of the flow it can be important to 
account for non-Darcian effects, namely, for the inertial 
(Forchheimer) and for the viscous (Brinkman) effects [I]. 

Investigations of heat transfer in Couette flow through a 
porous medium are limited to the case of a Brinkman-Darcy 
porous medium [2, 31. In an insightful investigation by 
Nakayama [4], analytical solutions for different situations of 
Couette flow through an inelastic porous medium, including 
a porous medium described by the Brinkman-Forchheimer 
extension of the Darcy law, are obtained. However, results 
of ref. [4] are limited to the fluid flow analysis only, and no 
investigation of heat transfer is made in this reference, To 
the best of the author’s knowledge, no attempt to analyze 
heat transfer in Couette flow through a Brinkman- 
Forchheimer-Darcy porous medium has yet been made. 

In [4] it is assumed that the channel is completely filled 
with a porous medium which is at rest, and there is no gap 
between the porous medium and the moving plate. Such a 
geometry can result in large friction forces between the 
porous matrix and the moving plate. This can lead to a 
damage of the porous matrix. In practical situations, it is 
necessary to assume that between a porous medium and a 
moving plate there is a gap filled with a clear fluid. Even if this 
gap is small, its influence on heat transfer can be significant. 
Accounting for this gap essentially complicates the problem, 
because it is necessary to analyze fluid flow and heat transfer 
in a composite channel, which is partially filled with a fluid 
saturated porous medium, and partially with a clear fluid. In 
solving this problem, correct boundary conditions at the 
porous medium/clear interface are important. In this 
research we utilize the boundary conditions at the interface 
suggested in Ochoa-Tapia and Whitaker [5, 61. 

2. ANALYSIS 

Figure 1 depicts the schematic diagram of the problem. 
Steady flow in a composite channel bounded by two infinite 
parallel plates is considered. The distance between the plates 
is H. The lower part of the channel is occupied by a clear 
fluid while the upper part is occupied by a fully saturated 

porous medium with uniform permeability. The upper plate 
and the porous medium are fixed, while the lower plate moves 
with a constant velocity, t?,. The fluid flow thus occurs due 
to a moving plain plate which is separated from the porous 
medium by a gap filled with a clear fluid of the thickness 6. 
It is assumed that a uniform heat flux is imposed at the 
moving plate while the fixed plate is insulated. The governing 
equations for this problem can be presented as : 

(1) 

(4) 

Equation (I) is a momentum equation for the clear fluid 
region while equation (2) is a momentum equation for the 
porous region (the Brinkman-Forchheimer-extended Darcy 
equation). Equations (3) and (4) are the energy equations 
for the clear fluid and porous regions, respectively. Following 
[7-91. in equations (3) and (4) it is assumed that the longi- 
tudinal heat conduction term is negligible. Also, in the 
porous region the local thermal equilibrium assumption 
between the fluid and solid phases is invoked. 

i 

0 

fixed plate, adiabatic 4 ” = 0 

moving plate, 
constant heat flux 

Fig. 1. Schematic diagram of the problem. 
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NOMENCLATURE 

A parameter defined in equation (23), F intrinsic average temperature [K] 
Re,F/Da#’ i;, mean temperature, (I/HU)& 2irT”dy [K] 

B parameter defined in equation (23), l/Da, T, temperature at the isoflux plate [K] 

2 
specific: heat of the fluid [J/(kg K)] a dimensionless velocity, z&/i& 
parameter defined in equation (23), n, dimensionless velocity at the clear 
[I + (1 + (2/WA/Bh)“211 fluid/porous medium interface 
11-U + W)(4Bh)"21 Qf filtration (seepage) velocity [m s-‘1 

Dan Darcy number [K/H*] % velocity of the lower plate [m SC’] 
F Forchheimer coefficient u mean flow velocity, (l/H) pa PI dy” 

: 
thickness of the channel, L + 6 [m] [m s-‘1 
thermal conductivity of the fluid ZZ streamwise coordinate [m] 
[w/(m WI P transverse coordinate [m] 

k ef effective thermal conductivity of the porous Y dimensionless transverse coordinate, p/H. 
medium [W/(m K)] 

K perme:ability of the porous medium [m2] Greek symbols 
L thickness of the porous layer [m] B the adjustable coefficient in the stress jump 
NU Nussel t number at the isoflux plate, boundary condition 

Hq”l[k-X~~ - ~tnim)l Y constant, (pL.tflnf)“’ 
R thermal conductivity ratio, k.fllk, 6 thickness of the fluid layer, m 
Ren Reynclds number, p&+.H/pf E porosity 
T di_men_sion!ess mmperature, Pf fluid viscosity [kg m-’ SC’] 

[T-~,l/[T,- Twl AR effective viscosity in the Brinkman term for 
T, dimensionless temperature at the clear the porous region [kg m-’ SC’] 

fluid/porous medium interface Pf density of the fluid [kg m-‘I. 

Equations (l)-(4) are subject to the following boundary 
conditions : 

ii, = a, k,_dT = q” 

% 

atg= -6 (5) 

The first two equations in (7) present continuity of the seep- 
age velocity and the stress jump condition at the interface 
suggested in refs. [5, 61. In refs. [5, 61 the inertial forces were 
not included in the analysis. At the same time, the stress 
jump boundary condition contains an empirical constant, 
8, which is to be determined experimentally. This permits 
necessary flexibility in modeling the interface and in adjusting 
these conditions to experimental data. Therefore, we believe 
that these conditions are appropriate to match the Stokes 
and the Brinkman-Forchheimer equations at the porous 
medium/clear fluid interface [lo]. 

Introducing dimensionless variables and utilizing the iso- 
flux condition, the momentum and energy equations, equa- 
tions (l)-(4), take lhe following form : 

,d2u 1 Re,F 
y dy2-zg”- 

--_u2=o O<& 
H (9) 

Dag’ 

CT := -Nuf!+ 
W 

(11) 

where 

The mean flow velocity, 0, in equations (10) and (11) is 
determined by the following equation : 

(14) 

and the mean temperature, Fm,, in equations (12) and (13) is 
determined by the following equation : 

(15) 

After the velocity distribution is found from equations (8) 
and (9) and the temperature distribution is found from equa- 
tions (10) and (11) as a function of the Nusselt number, the 
value of the Nusselt number can be found by substituting u 
and Tin the following compatibility condition : 

5 yH Tudv = 1. 

Equations (8)-(1 1) must be solved subject to the following 
boundary conditions : 

n=l T=O atY=_i 
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u=o Lo aty=; 
aY 

ul,.=+o = uI,.= -0 

(18) 

.* du du ! I -- 
’ dy ,=+o dy rz-0 

= BDUH”%I,_” 

BdT ,dT 
I I dy v=+” dy ,= -0 

aty = 0. (19) 

Exact solution of equations (8))(11) with boundary con- 
ditions (17)-(19) is not available in a closed form. However, 
for most practical applications it can be assumed that the 
momentum boundary layer which forms near the moving 
plate does not reach the fixed plate. This allows to replace 
the no-slip boundary condition at the fixed plate given by the 
first of equations (18) with the following boundary condition 
outside the momentum boundary layer : 

(20) 

A similar assumption was utilized by Vafai and Kim [l l] in 
obtaining their analytical solution for the forced convection 
in a parallel-plate channel filled with a porous medium. They 
assumed that the momentum boundary layer does not reach 
the center of the channel. A comparison of the solution 
obtained by Vafai and Kim [ll] against a full numerical 
solution is presented in [12]. This comparison has shown that 
this is a good assumption as long as Da, < I, which is the 
case for most practical porous media. 

If the momentum boundary layer does not reach the fixed 
plate, equations (8) and (9) can be integrated analytically 
and the solution for the fluid flow velocity takes the following 
form : 

38 

a=22 

where 

u = a,-(l-a,);J 
6 

< a<0 -jIj,). (21) 

0 <y <$ (22) 

Rr,F 
A=-- B=&, D= 

Dajj2 ’ H I,2 

(23) 

and the dimensionless velocity at the clear fluid/porous 
medium interface, ui, can be found from the following tran- 
scendental equation 

I!2 

- YU, +(1-u,);= pB’!*u,. (24) 

The mean flow velocity, 0, can then be calculated from the 
following equation 

BW 

+~YA (25) 

With the flow velocity given by equations (21) and (22), 
equations (10) and (11) can also be integrated analytically. 
This results in the following temperature distribution : 

6 - z < y ,i 0 (26) 

_ + T, 0 < y ,< $ (27) 

where the dimensionless temperature at the clear fluid/ 
porous medium interface, T,, can be found as 

T, = Nu+ (28) 

where 

B”’ 6 
G = 6AyH 

I 

+;(I-a,)(;~+;~,($~ (29) 

Finally, if the velocity and temperature distributions are 
given by equations (21)-(22) and (26))(27), respectively, 
equation (16) can also be solved analytically. The solution 
for the Nusselt number is then obtained as : 

(30) 

where 
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36EY _!__. 
A2 

I 
R l+D 

(31) 

Figure 2 (top) shows the velocity and temperature dis- 
tributions in the channel. This figure is computed utilizing 
equations (21)-(22) and (26)-(27) for the following par- 
ameterva1ues:A=102,y=1,~=0,R=1and6/H=0.1. 
The lower plate is a moving plate, and the dimensionless 
fluid velocity at y = -6 equals unity. Because the porous 
medium creates resistance to the fluid flow, the fluid velocity 
quickly decreases with distance from the moving plate. A 

0.9 

0.6 

-0.1 
0 0.2 0.4 0.6 0.8 I 1.2 I.4 I.6 I.8 2 

u, T 

5 

Fig. 2. Velocity and temperature distributions (top) and Nusselt number as a function of the gap size 
between the porous medium and the moving plate (bottom). 
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decrease in the Darcy number translates into a decrease in 
permeability of the porous medium and therefore leads to a 
faster velocity decrease with an increase in the coordinate y. 
It can be seen that for both Da, = 1O-4 and Da” = lo-’ the 
momentum boundary layer does not reach the fixed plate, 
therefore no-slip boundary condition at the upper (fixed) 
plate is perfectly satisfied. 

According to Fig. 2 (top), the dimensionless temperature 
in the porous region of the channel for a small value of 
the Darcy number (Da, = 10m4) is almost constant. This is 
because for Dan = 10m4 there is almost no fluid flow in the 
porous region, and heat transfer in the porous region is 
caused almost only by thermal conductivity. Since the upper 
plate is insulated, the temperature is almost constant. It can 
also be seen that the temperature gradient at the moving 
plate increases with a decrease in the Darcy number. 

Figure 2 (bottom) shows the dependence of the Nusselt 
number on the size of the gap between the porous medium 
and the moving plate. This figure is computed utilizing equa- 
tions (30) and (31) for the following parameter values : 
A = IO’, y = 1, b= 0 and R = 1. It can be seen that the 
Nusselt number increases with a decrease in the width of the 
gap and with a decrease in the Darcy number. This is because 
the decrease in the width of the gap as well as the decrease in 
the permeability of the porous medium cause the temperature 
gradient near the moving plate to increase. This results in a 
larger value of the Nusselt number. 

3. CONCLUSIONS 

A problem of fluid flow and heat transfer in Couette flow 
through a composite channel, which is partially filled with a 
fluid saturated porous medium, and partially with a clear 
fluid, is considered. The flow in the porous region is described 
by the Brinkman-Forchheimer-extended Darcy equation. 
For the analysis of heat transfer insulated fixed plate and 
isoflux moving plate are considered. This problem is solved 
under the boundary layer approximation. Analytical solu- 
tions for the flow velocity, temperature distribution and for 
the Nusselt number are obtained. 
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